Spin-dependent transport through interacting graphene armchair nanoribbons

نویسندگان

  • Sonja Koller
  • Leonhard Mayrhofer
  • Milena Grifoni
چکیده

We investigate spin effects in transport across fully interacting, finite size graphene armchair nanoribbons (ACNs) contacted to collinearly spin-polarized leads. In such systems, the presence of short ranged Coulomb interaction between bulk states and states localized at the ribbon ends leads to novel spin-dependent phenomena. Specifically, the total spin of the low energy many-body states is conserved during tunneling but that of the bulk and end states is not. As a consequence, in the singleelectron regime, dominated by Coulomb blockade phenomena, we find pronounced negative differential conductance features for ACNs contacted to parallel polarized leads. These features are however absent for an anti-parallel contact configuration, which in turn leads within a certain gate and bias voltage region to a negative tunneling magneto-resistance. Moreover, we analyze the changes in the transport characteristics under the influence of an external magnetic field. PACS numbers: 72.25.-b Spin-polarized transport; 72.80.Vp Electronic transport in graphene; 73.23.Hk Coulomb blockade; singleelectron tunneling; Spin-dependent transport through interacting graphene armchair nanoribbons 2 Figure 1. A graphene armchair nanostripe contacted by ferromagnetic leads. At the long sides, the lattice is terminated in armchair, at the small ends in zig-zag configuration. The length of a bond between two carbon atoms is a0 ≈ 0.14 nm. We choose the orientation of the coordinate system such that the x-axis points along the zigzag ends, the y-axis along the long armchair edges of the stripe.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spin-polarized transport through a zigzag-edge graphene flake embedded between two armchair nanoribbons electrodes

We study the coherent spin-polarized transport through a zigzag-edge graphene flake (ZGF), using Hubbard model in the nearest neighbor approximation within the framework of the Green function’s technique and Landauer formalism. The system considered consists of electrode/ (ZGF)/electrode, in which the electrodes are chosen to be armchair nanoribbons. The study was performed for two types of ele...

متن کامل

Interplay of relativistic and nonrelativistic transport in atomically precise segmented graphene nanoribbons

Graphene's isolation launched explorations of fundamental relativistic physics originating from the planar honeycomb lattice arrangement of the carbon atoms, and of potential technological applications in nanoscale electronics. Bottom-up fabricated atomically-precise segmented graphene nanoribbons, SGNRs, open avenues for studies of electrical transport, coherence, and interference effects in m...

متن کامل

Electronic transport properties of graphene nanoribbons

We will present brief overview on the electronic and transport properties of graphene nanoribbons focusing on the effect of edge shapes and impurity scattering. The low-energy electronic states of graphene have two non-equivalent massless Dirac spectrum. The relative distance between these two Dirac points in the momentum space and edge states due to the existence of the zigzag type graphene ed...

متن کامل

Spintronic Transport in Armchair Graphene Nanoribbon with Ferromagnetic Electrodes: Half-Metallic Properties

Utilizing first-principles theory, we demonstrate that half-metallicity can be realized in a junction composed of non-magnetic armchair graphene nanoribbon (AGNR) and ferromagnetic Ni electrodes. The half-metallic property originates from the AGNR energy gap of the up spin located at the Fermi energy, while large electronic states are generated for the down spin. By altering the interlayer dist...

متن کامل

Flat-band ferromagnetism in armchair graphene nanoribbons

We study the electronic correlation effects in armchair graphene nanoribbons that have been recently proposed to be the building blocks of spin qubits. The armchair edges give rise to peculiar quantum interferences and lead to quenched kinetic energy of the itinerant carriers at appropriate doping level. This is a beautiful one-dimensional analogy of the Landaulevel formation in two dimensions ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009